#include <iostream>
#include <bits/stdc++.h>
// policy based datastructure
// #include <ext/pb_ds/assoc_container.hpp>
// using namespace __gnu_pbds;
// typedef tree<int,null_type,less<int>,rb_tree_tag,
// tree_order_statistics_node_update> indexed_set;
#define ll long long
#define en '\n'
#define ff first
#define ss second
#define pb push_back
#define MP make_pair
#define mod 1000000007
#define mod2 998244353
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef priority_queue<ll> pqi;
typedef priority_queue<ll, vi, greater<ll>> minpqi;
typedef pair<ll, ll> pii;
#define debarr(a, n) \
cout << #a << " : "; \
for (int i = 0; i < n; i++) \
cerr << a[i] << " "; \
cerr << endl;
#define debmat(mat, row, col) \
cout << #mat << " :\n"; \
for (int i = 0; i < row; i++) \
{ \
for (int j = 0; j < col; j++) \
cerr << mat[i][j] << " "; \
cerr << endl; \
}
#define pr(...) dbs(#__VA_ARGS__, __VA_ARGS__)
template <class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p)
{
return os << "(" << p.first << ", " << p.second << ")";
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const unordered_set<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class S, class T>
ostream &operator<<(ostream &os, const unordered_map<S, T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const set<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const multiset<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class S, class T>
ostream &operator<<(ostream &os, const map<S, T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
void dbs(string str, T t) { cerr << str << " : " << t << "\n"; }
template <class T, class... S>
void dbs(string str, T t, S... s)
{
int idx = str.find(',');
cerr << str.substr(0, idx) << " : " << t << ",";
dbs(str.substr(idx + 1), s...);
}
template <class T>
void prc(T a, T b)
{
cerr << "[";
for (T i = a; i != b; ++i)
{
if (i != a)
cerr << ", ";
cerr << *i;
}
cerr << "]\n";
}
#define all(x) x.begin(), x.end()
#define present(c, key) (find(all(c), key) != c.end())
#define tr(c, it) for (auto it : c)
#define fr(i, s, e) for (ll i = s; i < e; i++)
#define revfr(i, s, e) for (ll i = s - 1; i >= e; i--)
#define getv(v, n) \
for (ll i = 0; i < n; i++) \
cin >> v[i];
template <typename T>
ostream &operator<<(ostream &os, vector<T> &v)
{
for (auto element : v)
{
os << element << ' ';
}
return os;
}
inline void add(ll &a, ll b)
{
a += b;
if (a >= mod)
a -= mod;
}
inline void sub(ll &a, ll b)
{
a -= b;
if (a < 0)
a += mod;
}
inline ll mul(ll a, ll b, ll p = mod)
{
return (ll)((long long)a * b % p);
}
inline ll power(ll a, long long b, ll p = mod)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
{
res = mul(res, a, p);
}
a = mul(a, a, p);
b >>= 1;
}
return res;
}
inline ll binpow(ll a, long long b)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
{
res = res * a;
}
a = a * a;
b >>= 1;
}
return res;
}
inline ll inv(ll a, ll p = mod)
{
a %= p;
if (a < 0)
a += p;
ll b = p, u = 0, v = 1;
while (a)
{
ll t = b / a;
b -= t * a;
swap(a, b);
u -= t * v;
swap(u, v);
}
if (u < 0)
u += p;
return u;
}
// inline ll lsb(ll x)
// {
// return x&(~(x-1));
// }
// ll modexp2(ll a, ll b, ll c, ll p) // calculate (a^(b^c))%prime
// {
// // By Fermat's Little Theorem (a^(p-1))%p = 1 if p is prime
// ll x = power(b,c,p-1); // so we first find remainder when b^c is divided by p-1
// return (power(a,x,p)); // then just do (a^remainder)%p
// }
ll gcd(ll a, ll b)
{
if (a == 0 or b == 0)
return a ^ b;
return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * (b / gcd(a, b));
}
void fread()
{
// #ifdef ONLINE_JUDGE
freopen("./input.txt", "r", stdin);
freopen("./output.txt", "w", stdout);
// #endif
}
void solve()
{
ll n, q;
cin >> n;
vector<pii> v;
fr(i, 0, n)
{
ll a, b;
cin >> a >> b;
v.pb({a, b});
}
sort(all(v), [&](pii a, pii b)
{ return (a.ff - a.ss) > (b.ff - b.ss); });
vi pre(n + 1, 0), suff(n + 1, 0);
fr(i, 0, n) pre[i + 1] = (pre[i] + v[i].ff);
revfr(i, n, 0) suff[i] = (suff[i + 1] + v[i].ss);
ll pos = 0, mAx = suff[0] + pre[0];
fr(i, 0, n + 1)
{
if (mAx < (pre[i] + suff[i]))
{
pos = i;
mAx = pre[i] + suff[i];
}
}
cin >> q;
map<pii, ll> mp;
while (q--)
{
ll x, y;
cin >> x >> y;
ll gc = gcd(x, y);
if (n % gc)
{
cout << "-1\n";
continue;
}
if (mp.find({x, y}) != mp.end())
cout << mp[{x, y}] << en;
else
{
ll ans = 0;
ll flag = 0;
if (x < y)
{
swap(x, y);
flag = 1;
}
ll n1 = n / gc;
x /= gc;
y /= gc;
ll a = -1, b = -1;
fr(i, 0, y + 1)
{
if (n1 < (i * x))
break;
if (n1 % y == ((i * x) % y))
{
a = i;
b = (n1 - (i * x)) / y;
if (flag)
{
swap(a, b);
swap(x, y);
}
break;
}
}
x *= gc;
y *= gc;
if (a == -1)
{
mp[{x, y}] = -1;
cout << "-1\n";
continue;
}
// all solution of ax+by=c is given by (x0+k*b/g,y0-k*a/g); for all integers k
ll move = (x * y) / gc;
ll st = (a * x);
st += ((pos - st) / move) * move;
while (st < 0)
st += move;
while (st > n)
st -= move;
ans = (pre[st] + suff[st]);
if (st < pos)
st += move;
while (st > n)
st -= move;
ans = max(ans, pre[st] + suff[st]);
if (st > pos)
st -= move;
while (st < 0)
st += move;
ans = max(ans, pre[st] + suff[st]);
mp[{x, y}] = ans;
cout << ans << en;
}
}
}
using namespace std;
int main()
{
fast
// fread();
ll _t = 1;
// cin >> _t;
fr(i, 1, _t + 1)
{
// cout<<"Case #"<<i<<": ";
// cerr<<"i="<<i<<en;
solve();
}
return 0;
}
771. Jewels and Stones | 1512. Number of Good Pairs |
672. Richest Customer Wealth | 1470. Shuffle the Array |
1431. Kids With the Greatest Number of Candies | 1480. Running Sum of 1d Array |
682. Baseball Game | 496. Next Greater Element I |
232. Implement Queue using Stacks | 844. Backspace String Compare |
20. Valid Parentheses | 746. Min Cost Climbing Stairs |
392. Is Subsequence | 70. Climbing Stairs |
53. Maximum Subarray | 1527A. And Then There Were K |
1689. Partitioning Into Minimum Number Of Deci-Binary Numbers | 318. Maximum Product of Word Lengths |
448. Find All Numbers Disappeared in an Array | 1155. Number of Dice Rolls With Target Sum |
415. Add Strings | 22. Generate Parentheses |
13. Roman to Integer | 2. Add Two Numbers |
515. Find Largest Value in Each Tree Row | 345. Reverse Vowels of a String |
628. Maximum Product of Three Numbers | 1526A - Mean Inequality |
1526B - I Hate 1111 | 1881. Maximum Value after Insertion |